一、只有1
一道简单的问题是:用1、+、×、的运算来分别表示23和27,哪个数用的1较少?要表达2008,最少要用多少个1?
我们先给出从1到15的表达式。
1=1,
2=1+1,
3=1+1+1,
4=(1+1)×(1+1),
5=(1+1)×(1+1)+1,
6=(1+1)×(1+1+1),
7=(1+1)×(1+1+1)+1,
8=(1+1)×(1+1)×(1+1),
9=(1+1+1)×(1+1+1),
10=(1+1)×((1+1)×(1+1)+1),
11=(1+1)×((1+1)×(1+1)+1)+1,
12=(1+1+1)×(1+1)×(1+1),
13=(1+1+1)×(1+1)×(1+1)+1,
14= (1+1)×((1+1)×(1+1+1)+1),
15= (1+1+1)×((1+1)×(1+1)+1)。
把用1的个数写成数列,就是{1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, ...}。
对于23,
23 = (1+1)×((1+1)×((1+1)×(1+1)+1)+1)+1,
1的个数为11。
对于27,
27 = (1+1+1) × (1+1+1) × (1+1+1)
1的个数为9。
对于2008这样的大数,要寻找表达式很困难。
我找到的表达式是
(((1+1)×(1+1)×(1+1+1)×(1+1+1)+1)×(1+1)×(1+1+1)+1)×(1+1+1)×(1+1+1)+1=2008
一共用了24个1,但是不是用了最少的1,证明起来有一定难度。
+《小学数论知识学习:整数拆分习题九》相关文章
- › 小学数论知识学习:整数拆分习题九
- › 小学数论知识学习:整数拆分习题十五
- › 小学数论知识学习:整数拆分习题十六
- › 小学数论知识学习:整数拆分习题(2)
- › 小学数论知识学习:整数拆分习题
- › 小学数论知识:奇偶分析习题十五
- 在百度中搜索相关文章:小学数论知识学习:整数拆分习题九