职业考试 | 在线试题 | 作文辅导 | 范文大全 | 中小学教育 | 试题教案课件

当前位置:得高分网中小学教学小学数学教学小学三年级数学学习小学数论知识学习:整数拆分习题九

小学三年级数学学习

当前:首页 >> 小学数论知识学习:整数拆分习题九

小学数论知识学习:整数拆分习题九

日期:07-25 00:56:15 | 小学三年级数学学习 | 浏览次数: 284 次 | 收藏

标签:小学三年级数学学习,http://www.gaofen123.com 小学数论知识学习:整数拆分习题九,

  一、只有1

  一道简单的问题是:用1、+、×、的运算来分别表示23和27,哪个数用的1较少?要表达2008,最少要用多少个1?

  我们先给出从1到15的表达式。

  1=1,

  2=1+1,

  3=1+1+1,

  4=(1+1)×(1+1),

  5=(1+1)×(1+1)+1,

  6=(1+1)×(1+1+1),

  7=(1+1)×(1+1+1)+1,

  8=(1+1)×(1+1)×(1+1),

  9=(1+1+1)×(1+1+1),

  10=(1+1)×((1+1)×(1+1)+1),

  11=(1+1)×((1+1)×(1+1)+1)+1,

  12=(1+1+1)×(1+1)×(1+1),

  13=(1+1+1)×(1+1)×(1+1)+1,

  14= (1+1)×((1+1)×(1+1+1)+1),

  15= (1+1+1)×((1+1)×(1+1)+1)。

  把用1的个数写成数列,就是{1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, ...}。

  对于23,

  23 = (1+1)×((1+1)×((1+1)×(1+1)+1)+1)+1,

  1的个数为11。

  对于27,

  27 = (1+1+1) × (1+1+1) × (1+1+1)

  1的个数为9。

  对于2008这样的大数,要寻找表达式很困难。

  我找到的表达式是

  (((1+1)×(1+1)×(1+1+1)×(1+1+1)+1)×(1+1)×(1+1+1)+1)×(1+1+1)×(1+1+1)+1=2008

  一共用了24个1,但是不是用了最少的1,证明起来有一定难度。

TAG:知识  

相关分类

小学三年级数学学习 更新

小学三年级数学学习 热门排行