把70表示成11个不同的自然数之和,同时要求含有质数的个数最多。
分析:先考虑把70表示成11个不同的自然数之和。
因1+2+3+……+11=66,现在要将4分配到适当的加数上,使其和等于70,又要使这11个加数互不相等。
先将4分别加在后四个加数上,得到四种分拆方法:
70=1+2+3+4+5+6+7+8+9+10+15
=1+2+3+4+5+6+7+8+9+14+11
=1+2+3+4+5+6+7+8+13+10+11
=1+2+3+4+5+6+7+12+9+10+11
再将4拆成1+3,把1和3放在适当的位置上,仅有一种新方法:
70==1+2+3+4+5+6+7+8+9+13+12
再将4拆成1+1+2或1+1+1+1或2+2,分别加在不同的位置上,都得不出新的分拆方法,故这样的分拆方法一共有五种。
显然,这五种分拆方法中含有质数的个数最多的是:
1+2+3+4+5+6+7+8+13+10+11
点金术:巧用举例和筛选法得出结论。
TAG:知识+《小学数论知识学习:整数拆分习题》相关文章
- › 小学数论知识学习:整数拆分习题
- › 小学数论知识:奇偶分析习题十五
- › 小学数论知识:奇偶分析习题十一
- › 小学数论知识学习:整数拆分习题十
- › 小学数论知识学习:整数拆分习题十二
- › 小学数论知识学习:奇偶分析习题八
- 在百度中搜索相关文章:小学数论知识学习:整数拆分习题