1.2-3=18化为对数式为()
A.log182=-3B.log18(-3)=2
C.log218=-3D.log2(-3)=18
解析:选C.根据对数的定义可知选C.
2.在b=log(a-2)(5-a)中,实数a的取值范围是()
A.a>5或a<2B.2
C.2
解析:选B.5-a>0a-2>0且a-2≠1,∴2
3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()
A.①③B.②④
C.①②D.③④
解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.
4.方程log3(2x-1)=1的解为x=________.
解析:2x-1=3,∴x=2.
答案:2
1.logab=1成立的条件是()
A.a=bB.a=b,且b>0
C.a>0,且a≠1D.a>0,a=b≠1
解析:选D.a>0且a≠1,b>0,a1=b.
2.若loga7b=c,则a、b、c之间满足()
A.b7=acB.b=a7c
C.b=7acD.b=c7a
解析:选B.loga7b=c?ac=7b,∴b=a7c.
3.如果f(ex)=x,则f(e)=()
A.1B.ee
C.2eD.0
解析:选A.令ex=t(t>0),则x=lnt,∴f(t)=lnt.
∴f(e)=lne=1.
4.方程2log3x=14的解是()
A.x=19B.x=x3
C.x=3D.x=9
解析:选A.2log3x=2-2,∴log3x=-2,∴x=3-2=19.
5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为()
A.9B.8
C.7D.6
解析:选A.∵log2(log3x)=0,∴log3x=1,∴x=3.
同理y=4,z=2.∴x+y+z=9.
6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且≠1),则logx(abc)=()
A.47B.27
C.72D.74
解析:选D.x=a2=b=c4,所以(abc)4=x7,
所以abc=x74.即logx(abc)=74.
7.若a>0,a2=49,则log23a=________.
解析:由a>0,a2=(23)2,可知a=23,
∴log23a=log2323=1.
答案:1
8.若lg(lnx)=0,则x=________.
解析:lnx=1,x=e.
答案:e
9.方程9x-6?3x-7=0的解是________.
解析:设3x=t(t>0),
则原方程可化为t2-6t-7=0,
解得t=7或t=-1(舍去),∴t=7,即3x=7.
∴x=log37.
答案:x=log37
+《高一数学课课练答案:对数与对数运算测试题》相关文章
- › 新高一数学必考知识点之相关定理应用(一)
- › 高一数学数列和公式
- › 高一数学:两角和与差的三角函数
- › 高一数学公式:函数
- › 高一数学常用公式总结:二倍角公式
- › 高一数学等比数列的通项公式
- 在百度中搜索相关文章:高一数学课课练答案:对数与对数运算测试题