【性质与概念】
注意
在某些全称命题中,有时全称量词可以省略。例如棱柱是多面体,它指的是“所有棱柱都是多面体”。
1、“对所有的”、“对任意一个”等词在逻辑中被称为全称量词,记作“∀”,含有全称量词的命题叫做全称命题。
对M中任意的x,有p(x)成立,记作"∀"x∈M,p(x)。
读作:每一个x属于M,使p(x)成立。
2、“存在一个”、“至少有一个”等词在逻辑中被称为存在量词,记作“∃”,含有存在量词的命题叫做特称命题。
M中至少存在一个x,使p(x)成立,记作"∃"x∈M,p(x)。
读作:读作:存在一个x属于M,使p(x)成立。
否定:
1、对于含有一个量词的全称命题p:"∀"x∈M,p(x)的否定┐p是:"∃"x∈M,┐p(x)。
2、对于含有一个量词的特称命题p:"∃"x∈M,p(x)的否定┐p是:"∀"x∈M,┐p(x)。
全称命题
全称命题:其公式为“所有S是P”。
全称命题,可以用全称量词,也可以用“都”等副词、“人人”等主语重复的形式来表达,甚至有时可以没有任何的量词标志,如“人类是有智慧的。”
由于代数定理使用的是全称量词,因此每个代数定理都是一个特强的条件。也正是全称量词使得使用带入规则进行恒等变换是代数推理的核心。
【练习题】
1、下列命题中的假命题是( )
A.存在实数α和β,使cos(α+β)=cosαcosβ+sinαsinβ
B.不存在无穷多个α和β,使cos(α+β)=cosαcosβ+sinαsinβ C.对任意α和β,使cos(α+β)=cosαcosβ-sinαsinβ
D.不存在这样的α和β,使cos(α+β)≠cosαcosβ-sinαsinβ
2、已知命题p:任意x∈R,sinx≤1,则p的否定是( )
A.存在x∈R,sinx≥1 B.任意x∈R,sinx≥1 C.存在x∈R,sinx>1 D.任意x∈R,sinx>1
3、不存在无穷多个α和β,使cos(α+β)=cosαcosβ+sinαsinβ是真命题还是假命题?
【参考答案】
1.B
2.C
3.假命题
+《全称量词概念、知识点及练习题》相关文章
- › 全称量词概念、知识点及练习题
- 在百度中搜索相关文章:全称量词概念、知识点及练习题