【性质与概念】
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)且等比数列a1≠ 0。
性质
(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
(2)在等比数列中,依次每 k项之和仍成等比数列。
(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则
{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…
{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。
(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。
(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。
(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零。
注意:上述公式中A^n表示A的n次方。
(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
求通项方法
(1)待定系数法:已知a(n+1)=2an+3,a1=1,求an
构造等比数列a(n+1)+x=2(an+x)
a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3
所以(a(n+1)+3)/(an+3)=2
∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3
(2) 定义法:已知Sn=a·2^n+b,,求an的通项公式。
∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b
∴an=Sn-Sn-1=a·2^n-1
应用
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式——复利。
即把前一期的利息和本金加在一起算作本金,
在计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。
【练习题】
1、将正奇数集合{1,3,5,…}由小到大按第n组有(2n-1)个奇数进行分组:
{1}, {3,5,7},{9,11,13,15,17},…
(第一组) (第二组) (第三组)
则1991位于第_____组中。
2、设数列的前n项和Sn=2an-1(n=1,2,…),数列满足b1=3,b(k+1)=ak+bk(k=1,2,…),求数列{bn}的前n项和。
3、等差数列中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列的公比的值等于。
【参考答案】
1.32
2.解:由Sn=2an-1,令n=1,得S1=a1=2a1-1,∴a1=1 ①
又Sn=2an-1 ②
S(n-1)=2(an-1)-1 ③
②-③得:Sn-S(n-1)=2an-2a(n-1)
∴an=2an-2a(n-1)
故an=2a(n-1)
∴数列是以a1=1为首项,以q=2为公比的等比数列,故an=2^(n-1) ④
由⑤ b(k+1)=ak+bk(k=1,2,…),
∴以上诸式相加,得{bn-2}={an},
∴{bn}=2^(n-1)+2
∴Sbn=2^n-1+2*n
3.4
+《等比数列概念、知识点及练习题》相关文章
- › 高一数学等比数列的通项公式
- › 高一数学等差和等比数列通项公式
- › 等比数列概念、知识点及练习题
- › 人教版高中数学《等比数列的前n项和》说课稿下载
- 在百度中搜索相关文章:等比数列概念、知识点及练习题