公式一: 设α为任意角,终边相同的角的同一三角函数的值相等 k是整数
sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sec(2kπ+α)=secα csc(2kπ+α)=cscα
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα
公式三: 任意角α与 -α的三角函数值之间的关系
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα
公式六: π/2±α及3π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα
TAG:中考数学+《中考数学公式指导:三角函数的诱导公式》相关文章
- › 中考数学复习反思
- › 2016中考数学复习之几何公式定理(5)
- › 2016年中考必备:中考数学公式大全
- › 初三数学辅导重点:中考数学补习三要点
- › 中考数学题库,海量习题
- › 中考数学备考:复习注重解题方法
- 在百度中搜索相关文章:中考数学公式指导:三角函数的诱导公式