1、书架上有不同的中文书9本,不同的英文书7本,不同的日文书5本.从这个书架上任意抽取两本书,这两本书不是同一种文字的概率是( )
2、甲袋中装有3个白球5个黑球,乙袋中装有4个白球6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分掺混后再从乙袋中随机取出一个球放回甲袋,则甲袋中白球没有减少的概率为( )
先计算白球减少的概率,从甲袋中取出白球概率为,再从乙袋中取出黑球概率为
所求概率为( )
3、甲、乙两人独立地对同一目标各射击一次,其命中率分别是0.6和0.5,现已知目标被击中,则它是甲射中的概率是( )
4、甲、乙两人投篮,命中率分别为0.4和0.6,每人各投两次。
求下列事件的概率:
(Ⅰ)两人都投进两球;
(Ⅱ)两人至少投进三个球。
5、已知:有6个房间安排4个旅游者住,每人可以进住任一房间,且进住房间是等可能的,试求下列各事件的概率:
(Ⅰ)事件A:指定的4个房间各有1人;
(Ⅱ)事件B:恰有4个房间各有1人;
(Ⅲ)事件C:指定的某个房间有2人。
6、用A、B、C、D四类不同的元件连接成系统N,当元件A正常工作且元件B、C都正常工作,或当元件A正常工作且元件D正常工作时,系统N正常工作.已知元件A、B、C、D正常工作的概率依次为
(Ⅰ)求元件A不正常工作的概率;
(Ⅱ)求元件A、B、C都正常工作的概率;
(Ⅲ)求系统N正常工作的概率。
7、甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为,求:
①恰有一个人译出密码的概率;
②至多一个人译出密码的概率。
8、设在一袋子内装有5只白球,5只黑球,从这袋子内任意取球5次,每次取一只,每次取出的球又立即放回袋子中,求在这5次取球中(结果保留两个有效数学)
①取得白球3次的概率;
②至少有1次取得白球的概率。
9、为了测试甲、乙两名篮球运动员投定位球的水平,在罚球线上让他们各投篮10次,甲投中7次,乙投中6次,如果让甲、乙依照各自的水平再投篮3次,求:
①甲运动员恰好投中2次的概率是什么?
②两名运动员都恰好投中2次的概率是多少?(结果保留两个有效数学)
10、一个口袋中装有大小相同的2个白球和3个黑球。
(Ⅰ)从中摸出两个球,求两球恰好颜色不同的概率;
(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率。
www.gaofen123.com
11、有一批种子,每粒发芽的概率为,播下5粒种子,计算:
(Ⅰ)其中恰好有4粒发芽的概率;
(Ⅱ)其中至少有4粒发芽的概率;
(Ⅲ)其中恰好有3粒没发芽的概率。
(以上各问结果均用最简分数作答)
12、一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球 4个,一小孩随手拿出4个,求至少有3个红球的概率是( )
13、某产品检验员检查每一件产品时,将正品错误地鉴定为次品概率为0.1,将次品错误地鉴定为正品的概率为0.2,如果这位检验员要鉴定4件产品,这4件产品中3件是正品,1件是次品,试求检验员鉴定成正品,次品各2件的概率。
14、猎人射击距离100米远处的静止目标命中的概率为0.6。
(1)如果猎人射击距离100米远处的静止目标3次,求至少有一次命中的概率;
(2)如果猎人射击距离100米远处的动物,假如第一次未命中,则进行第二次射击,但由于枪声惊动动物使动物逃跑从而使第二次射击时动物离猎人的距离变为150米,假如第二次仍未命中,则必须进行第三次射击,而第三次射击时动物离猎人的距离为200米。假如击中的概率与距离成反比。求猎人最多射击三次命中动物的概率。
15、某班数学兴趣小组有男生和女生各3名,现从中任选2名学生去参加校数学竞赛,求:
(I)恰有一名参赛学生是男生的概率;
(II)至少有一名参赛学生是男生的概率;
(Ⅲ)至多有一名参赛学生是男生的概率。
16、有外形相同的球分装在三个不同的盒子中,每个盒子10个球,其中第一个盒子中7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个,试验按如下规则进行:先在第一个盒子中任取一球,若取得标有字母A的球,则在第二个盒子中任取一球;若第一次取得标有字母B的球,则在第三个盒子中任取一球,如果第二次取出的是红球,则称试验成功,求试验成功的概率。
17、有甲、乙两个篮球运动员,甲投篮的命中率为0.7,乙投篮的命中率为0.6,每人各投篮三次:
(Ⅰ)甲恰有2次投中的概率;
(Ⅱ)乙至少有1次投中的概率;
(Ⅲ)甲、乙两人投中数相等的概率。
18、高三(1)班、高三(2)每班已选出3名学生组成代表队,进行乒乓球对抗赛,比赛规则是:
①按“单打、双打、单打”顺序进行三盘比赛;
②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛;
③先胜两盘的队获胜,比赛结束。
已知每盘比赛双方胜出的概率均为。
(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?
(Ⅱ)高三(1)班代表队连胜两盘的概率是多少?
(Ⅲ)高三(1)班代表队至少胜一盘的概率为多少?
19、某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:
(1)第3次拨号才接通电话;
(2)拨号不超过3次而接通电话。
20、深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑。请问警察的认定对红色出租车公平吗?试说明理由。
21、一机床可以按各种不同的速度运转,其生产的零件有一些是二级品,每小时生产二级品的多少,随机床的运转速度而变化。下面是试验的结果:
(1)作出散点图;
(2)求出机床速度与每小时生产的二级品件数的回归直线方程;
(3)若实际生产中,只允许每小时生产的二级品不超过10件,那么机床的速度不得超过多少转/秒?
22、下图所示是一批产品中抽样得到数据的频率分布直方图,由图中可看出概率最大时数据所落在的范围是 ( )
A.(8.1,8.2) B.(8.2,8.3)
C.(8.4,8.5) D.(8.6,8.7)
以上内容是www.gaofen123.com小编整理的高二数学概率过关题精选,希望能帮助同学们提高成绩!
+《高二数学概率过关题精选》相关文章
- › 高二数学期末考试卷
- › 掌握高二数学概念的六大方法
- › 高二数学正弦定理测试题
- › 过来人分享:高二数学学习心得总结
- › 方法点拨:高二数学概念学习的六个方法
- › 高二数学公式:向量公式
- 在百度中搜索相关文章:高二数学概率过关题精选