31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
因为33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种情况:
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
效率比原来降低1/5,即变为原来的4/5,那么所用时间就是原来的5/4,比原来多用:
5/4-1=1/4
所以,推迟的20分钟就是原来完成160个零件所用时间的1/4。原来完成160个零件需要:
20/(1/4)=80分钟
这批零件共有:160/(80/120)=240个。
160个的时间比是4:5,相差1份,是20分钟
4份是80分钟
160个前做了120-80=40分,
80分160个,40分160/2=80
160+80=240
我也来做一种方法:
推迟的20分钟,即1/3小时相当于后来用时的1/5,所以,后来用时1/3÷1/5=5/3小时
原来的工效做160个零件就用了5/3-1/3=4/3小时。
所以,每小时可以完成160÷4/3=120个
2小时完成任务,这批零件就有120×2=240个
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
买甲比买丙多8+6=14张,而丙每张比甲贵0.70元,多买14张甲一共0.50*14=7元,所以可以支付丙7/0.70=10张,钱数一共是1.20*0=12元,可以买乙10+6=16张,所以乙的价钱是12/16=0.75元。
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
我的思路是这样的。
三个儿子共拿出1200×3=3600元,
这3600元刚好就是两个儿子应该分得的钱。
每个儿子应该分得3600÷2=1800元。
三间房子共值1800×5=9000元,
那么每间房子值9000÷3=3000元。
再做一种思路:
每人应该分得3÷5=3/5间房子,那么分得房子的就多分了1-3/5=2/5间
也就是说2/5间房子值1200元,所以每间房子值1200÷2/5=3000元
继续分享算法:
如果还有5-3=2间房子,每人都分得房子,那么就要拿出1200×5=6000元
所以,每间房子值6000÷2=3000元。
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
我的思考如下:
小燕两次相差2A,且两次相差总画册的1/3-1/4=1/12
当A=1时,两人的总和是2÷1/12=24本,少于38本
当A=2时,两人的总和是4÷1/12=48本,多于38本
所以,A=1
第一次交换,小燕有24×1/3=8本,
原来小燕有8-1=7本
小明有24-7=17本
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
先理清思路:根据题意可以得出下面的关系。
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
充分利用年龄差来解答问题。
妹妹:9岁, 哥哥:兄妹差+9 ,爸爸:(兄妹差+9)×3
妹妹:兄妹差, 哥哥:兄妹差×2,爸爸:34岁
因为爸爸和哥哥的年龄差也将恒定不变。
所以,(兄妹差+9)×2=34-兄妹差×2
所以,兄妹差是(34-2×9)÷4=4岁
即当妹妹9岁时,哥哥4+9=13岁,爸爸13×3=39岁
三人年龄和是9+13+39=61岁
所以,再过(64-61)÷3=1年,年龄和就是64岁了。
所以,现在妹妹9+1=10岁,哥哥13+1=14岁,爸爸39+1=40岁
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上,
拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,
丙用40÷(3-1)=20分钟追上甲
交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,
丙用80÷(3-1)=40分钟追上乙,把信交给乙。
所以,共用了5+20+40=65分钟。
乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。
所以共用去65+25=90分钟
又想到一个思路,追上并返回。
追上乙并返回,需要10÷(3-1)×2=10分钟
追上甲并返回,需要10×3÷(3-1)×2=30分钟
再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟
共用10+30+50=90分钟 39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
假设全是甲车间的工人,共生产:94*15=1410把;
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;
而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。
所以,这120米就是乙路程的2/7-1/7=1/7;
乙回家的路程为:120/(1/7)=840米。
我也做两种基本的方法
方法一:
乙行甲那么远的路,就要14÷(1+1/6)=12分钟
所以甲回家有12÷(1/10-1/12)=720米
所以乙回家的路程是720×(1+1/6)=840米
方法二:
甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟
所以乙回家的路程是12÷(3/35-1/14)=840米
比实际少生产:1998-1410=588把;
一个甲车间工人换成乙车间的,多生产:43-15=28把;
乙车间共有工人:588/28=21人;
甲车间每天比乙车间多生产:1998-21*43*2=192把。
红球×1/3+黄球×1/4+白球×1/5=160-120=40………………①
红球×1/5+黄球×1/4+白球×1/3=160-116=44………………②
红球+黄球+白球=160………………………………………………③
利用初中的代数消元法思想来解答。
如果按照第一种方案,取160÷40=4次刚好取完,
红球还差4/3-1=1/3,白球就多出1-4/5=1/5,黄球取完了,
说明红球的1/3和白球的1/5相等,红球和白球的个数比是3:5
按照两种方案的比较发现,白球的1/3-1/5=2/15比红球的2/15多4个
即白球比红球多4÷2/15=30个
所以红球有30÷(5-3)×3=45个,白球有45+30=75个
黄球就是160-45-75=40个
甲超过了50度,乙未达到 50度。
因为33=5*5+8,可以得出:
甲用电:50+1=51度,乙用电:50-5=45度。
如果都超过50度,那么相差就应该是8的倍数,显然33不是8的倍数;
如果都没有超过50度,那么相差就应该是5的倍数,同样33也不是5的倍数。
因此,甲50度以上,乙50度以下。
33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。
所以甲50+1=51度,乙50-5=45度